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1Tecnológico Nacional de México/IT de Mérida, Yucatán, Mexico

A B S T R A C T

Triatoma infestans, a primary vector of Chagas disease, poses a significant public health risk in Latin
America. Rapid and accurate identification of this insect is essential for both vector surveillance pro-
grams and individual-level decision-making after potential exposure. Traditional identification methods
rely on manual inspection, which is time-consuming, error-prone, and dependent on expert knowledge.
This study explores the feasibility of an AI-driven detection system based on the medium YOLOv8
model (YOLOv8m) to automate the identification of T. infestans from images. The model was trained
on a dataset of 91 manually labeled images, with built-in data augmentation techniques dynamically
generating 9,100 augmented images over 100 training epochs. The model achieved high accuracy, with
a mean average precision at an Intersection over Union threshold of 50% (mAP@50) of 0.9588 and a
fitness score of 0.6844, demonstrating its effectiveness under controlled conditions. To assess its reli-
ability, detection examples were analyzed in varied lighting conditions and backgrounds, as well as in
scenarios where T. infestans appeared alongside visually similar insects. Results show that the model
can consistently detect T. infestans while avoiding false positives for other insect species, highlighting
its potential for real-world deployment. This work provides a proof of concept for the integration of AI
in entomological identification tasks. Future improvements include expanding the dataset, fine-tuning
model hyperparameters, and adapting the system for mobile or embedded deployment to facilitate field
usability. By automating T. infestans detection, this study contributes to enhanced vector surveillance
efforts and better-informed responses to potential Chagas disease exposure.
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1. Introduction

Triatoma infestans, commonly known as the “Chinche
Besucona” in some parts of Mexico, is a primary vec-
tor of Chagas disease, a life-threatening illness caused
by Trypanosoma cruzi [1]. This disease affects millions
of people, particularly in Latin America, where T. in-
festans is widespread [2]. Early and accurate identifi-
cation of this insect is crucial for vector control pro-

grams, as prompt intervention can significantly reduce
transmission risk [3]. Recognizing T. infestans requires
attention to its distinctive morphological features, in-
cluding an elongated, flattened body, a dark exoskele-
ton with reddish-orange markings along the edges of its
abdomen, and a prominent, cone-shaped head with an
extended proboscis [4] (Figure 1). These characteristics
are essential for distinguishing it from other hemipteran
insects, some of which may resemble T. infestans but
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do not pose the same epidemiological risk.
Failure to correctly identify T. infestans can lead

to serious public health consequences [4]. If a person is
bitten by this insect, it is recommended to capture it
rather than kill it and take it to a nearby health center
for examination [2]. Experts can determine whether the
insect carries T. cruzi, helping assess the risk of Chagas
disease transmission [5]. Misidentification or failure to
detect T. infestans could prevent this crucial step, de-
laying medical attention [1]. Conversely, if the insect is
not T. infestans, the person should pursue a different
course of action, making accurate identification criti-
cal for public health responses [3]. Despite its impor-
tance, manual identification of T. infestans remains a
significant challenge [6]. The process is labor-intensive,
requiring trained entomologists and public health work-
ers to visually inspect and classify insects [7]. Moreover,
this approach is time-consuming and prone to human
error and inconsistencies, particularly when differenti-
ating T. infestans from visually similar species [8]. The
lack of scalable and automated detection methods lim-
its the efficiency of epidemiological surveillance efforts,
emphasizing the need for innovative technological solu-
tions [9].

Recent advancements in artificial intelligence (AI),
particularly in computer vision and deep learning, have
revolutionized the automation of insect detection [10].
Object detection models, such as YOLO (You Only
Look Once), have demonstrated remarkable success in
real-time applications across various domains, includ-
ing medical imaging, agriculture, and environmental
monitoring [11]. These models offer a fast and accu-
rate means of identifying objects within an image, mak-
ing them ideal for tasks requiring rapid decision-making
[12].

In the context of vector control, AI-powered detec-
tion systems can significantly enhance epidemiological
surveillance by providing an efficient, scalable, and re-
liable solution for identifying T. infestans [13]. By au-
tomating the identification process, AI can bridge the
gap between expert entomologists and the general pub-
lic, enabling individuals to make informed decisions af-
ter an insect bite [14]. Public health authorities can
deploy automated detection systems capable of quickly
analyzing large volumes of images, thereby improving
response times and aiding in more effective disease pre-
vention strategies [15].

The primary objective of this study is to develop
a detection model based on the medium variant of
YOLOv8 (YOLOv8m) to accurately identify T. infes-
tans in real-world conditions. The model was trained
on a dataset consisting of images sourced from both on-
line repositories [16, 17] and field photographs, ensur-
ing a diverse and representative training set. Manual
annotation was performed to precisely label the insects,
improving the quality of the training data and reducing
misclassification risks. By creating a robust detection
system, this research aims to contribute to the automa-
tion of insect vector identification, ultimately assisting
in the early detection and control of T. infestans pop-

ulations to mitigate the spread of Chagas disease. Ad-
ditionally, this model has the potential to allow non-
experts to verify whether an insect requires further ex-
amination.

This study follows a structured methodology to en-
sure the development of an effective detection system.
The YOLOv8m model was trained on a dataset of 91
manually labeled images, with additional variations in-
troduced dynamically through YOLOv8’s built-in data
augmentation techniques to enhance model generaliza-
tion. Over 100 training epochs, these transformations
generated approximately 9,100 augmented images, sig-
nificantly increasing dataset diversity without requiring
additional manual labeling. The majority of the original
images were sourced from public repositories, ensuring a
diverse dataset while maintaining consistent visual char-
acteristics. These included sharp focus, clear lighting,
and varied angles, capturing T. infestans from top, side,
and perspective views (Figure 1). The dataset also en-
sured that the insect was represented in natural resting
positions, often against contrasting backgrounds, such
as walls, textiles, and outdoor surfaces. Performance
evaluation was conducted by measuring precision, re-
call, and mean average precision (mAP) to assess the
model’s effectiveness. Additionally, a real-time detec-
tion system was implemented using OpenCV, enabling
live insect identification through video input. The study
presents preliminary results, highlighting the strengths
of the YOLOv8m model while also identifying areas for
future improvement, such as fine-tuning hyperparame-
ters, expanding the dataset with more diverse samples,
and optimizing the model for better detection accuracy
in challenging real-world conditions.

The remainder of this paper is structured as fol-
lows. Section 2 provides a detailed account of the
AI prototype, including design considerations and in-
novative features. Section 3 describes the implemen-
tation process and presents preliminary results, high-
lighting unique challenges encountered during develop-
ment. Section 4 explores the broader implications of the
project, its contributions to advancing AI applications,
and possible future enhancements. Finally, Section 5
summarizes the study’s objectives, key findings, and the
next steps for further research and development.

2. Project Description

The proposed system is designed to detect T. infestans
in real-world conditions using YOLOv8m. The model is
trained on a labeled dataset consisting of images from
both online sources and field-collected photographs. By
leveraging deep learning techniques, the system is opti-
mized for real-time detection, ensuring fast and accurate
identification of the insect in various environments. The
ability to automate T. infestans identification plays a
crucial role in vector surveillance, allowing public health
organizations to respond promptly and efficiently to po-
tential outbreaks. This approach reduces the depen-
dency on manual identification, minimizing errors and
improving the scalability of vector control programs.

31

http://maikron.org/jaica


Journal of Artificial Intelligence and Computing Applications (2024) 2(2)

Figure 1. Images of T. infestans showcasing its distinctive morphological patterns, including its elongated
body shape, dark exoskeleton with reddish-orange markings, and prominent proboscis. These images are
also examples of samples used in the dataset.

The dataset used for training the detection model
consisted of images obtained from both freely avail-
able online sources, such as Google Images, and orig-
inal field photographs taken specifically for this study.
This approach ensured a diverse dataset, incorporat-
ing variations in lighting, angles, and backgrounds to
improve model robustness. To ensure accurate train-
ing, all images were manually annotated, precisely la-
beling instances of T. infestans using bounding boxes.
A manual filtering process was also performed to re-
move illustrative images, low-quality samples, and im-
ages where the insect was not clearly visible, ensuring
that only high-quality images contributed to training.
The dataset was then split into 91 images for train-
ing and 27 images for validation, maintaining a bal-
anced distribution for effective model evaluation. Dur-
ing training, YOLOv8’s built-in augmentation function-
alities were applied dynamically, generating a variation
of each image per epoch. Since the model was trained
for 100 epochs, this resulted in an approximate 9,100
augmented training images and a similar augmentation
process for the validation set. This dynamic augmenta-
tion strategy allowed the model to learn from a signif-
icantly expanded dataset, improving generalization to
real-world conditions.

YOLOv8m was selected for this task as a balance
between speed and accuracy, making it particularly
well-suited for automated insect identification [18, 19].
Among the available YOLOv8 variants, the medium
(m) version was chosen to ensure a lightweight yet
powerful model capable of handling real-time detec-
tion efficiently [20]. Unlike traditional object detection
models that require multiple stages for region proposal

and classification, YOLO performs detection in a sin-
gle pass, significantly reducing computational overhead
while maintaining high precision [21]. This efficiency is
crucial for real-time applications, such as field surveil-
lance and mobile deployment, where rapid detection is
necessary for timely interventions [11].

Other possible alternatives, such as Faster R-CNN
and EfficientDet, were considered but ultimately not
chosen due to their trade-offs [22, 23]. Faster R-CNN
is known for its high accuracy but suffers from slower
inference times due to its two-stage detection pipeline,
making it less suitable for real-time processing [24]. Ef-
ficientDet, on the other hand, offers a balance between
accuracy and speed, but it requires extensive hyperpa-
rameter tuning and more computational resources for
optimal performance [25]. YOLOv8 incorporates im-
proved feature extraction, better anchor-free detection,
and an optimized model architecture, making it the
most effective option for this study [20]. Its ability
to generalize well across different environments while
maintaining low latency and high precision positioned
it as the ideal choice for detecting T. infestans in real-
world conditions [18].

To improve the model’s robustness and generaliza-
tion across diverse real-world conditions, data augmen-
tation was applied using YOLOv8’s built-in augmenta-
tion functionalities. These techniques introduced con-
trolled variations in the dataset, enhancing the model’s
ability to handle changes in lighting, orientation, and
scale. The applied transformations included random ro-
tations (up to 10 degrees), translations (shifting up to
10% of the image), scaling (50% zoom), shear trans-
formations (10-degree distortion), and flipping (both
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vertical and horizontal with a 50% probability each).
By leveraging YOLOv8’s native augmentation methods,
the model was exposed to a wider range of visual scenar-
ios, reducing the risk of overfitting to specific conditions
and improving its detection accuracy in real-world en-
vironments.

By diversifying the training data, these techniques
significantly improved the model’s generalization capa-
bility, reducing its sensitivity to minor variations in
insect appearance and background clutter. This was
particularly important given the diversity of real-world
settings where T. infestans might be encountered, in-
cluding different lighting conditions, backgrounds, and
camera angles. The augmented dataset helped the
model develop a more robust feature representation, ul-
timately leading to improved detection accuracy when
applied to previously unseen images in real-world appli-
cations.

The training process for the YOLOv8m model was
conducted on Google Colab, leveraging its GPU acceler-
ation to efficiently handle the computational demands
of deep learning. The training environment was con-
figured with a Tesla T4 GPU, allowing for faster pro-
cessing and reduced training times compared to CPU-
based setups. The dataset, preprocessed with augmen-
tation techniques, was fed into the YOLOv8m train-
ing pipeline using the default settings provided by the
model’s framework.

For this initial version of the model, no hyperpa-
rameter tuning was performed, meaning the training
followed YOLOv8m’s default configurations, including
predefined learning rate, batch size, and anchor box set-
tings. While these default parameters provided strong
baseline performance, future iterations of the model
may benefit from fine-tuning key hyperparameters to
further optimize detection accuracy. Adjustments such
as learning rate scheduling, batch size optimization,
and anchor size adjustments could enhance the model’s
ability to detect T. infestans with greater precision,
particularly in challenging real-world conditions. Mov-
ing forward, experimenting with transfer learning and
adaptive training strategies may also contribute to im-
proved detection performance, ensuring the model re-
mains both accurate and efficient in operational set-
tings.

After training, the YOLOv8m model was de-
ployed for real-time detection using OpenCV, enabling
live identification of T. infestans through a webcam
feed. The system processes incoming video frames
in real time, passing each frame through the trained
YOLOv8m model to detect the presence of the insect.
If a detection is made, the model generates bounding
boxes around the identified insect, displaying them on
the screen with confidence scores. To ensure high relia-
bility while prioritizing the minimization of false nega-
tives over false positives, a confidence threshold of 80%
was applied. This means that only detections with a
probability of 80% or higher are considered valid, reduc-
ing the likelihood of missing actual T. infestans speci-
mens.

The pipeline follows an efficient loop where each
video frame is captured, processed, and displayed in
quick succession, maintaining smooth real-time perfor-
mance. This setup allows for instant feedback, making
it suitable for field applications where rapid identifica-
tion of T. infestans is crucial for vector control pro-
grams. The use of OpenCV ensures the system remains
lightweight and deployable on various hardware con-
figurations, from personal computers to potential mo-
bile and embedded applications. Future enhancements
may include integrating additional post-processing tech-
niques to further refine detection accuracy and reduce
computational overhead.

This project stands out due to its custom dataset
creation, real-time deployment capabilities, and scal-
ability for future applications. Unlike generic object
detection models, this model was specifically designed
for detecting T. infestans, incorporating field-collected
and manually labeled images to ensure high accuracy in
real-world conditions. Its real-time deployment capa-
bility, powered by OpenCV and YOLOv8m, allows for
immediate identification using a webcam with minimal
latency, making it suitable for both laboratory moni-
toring and field applications. By applying a 90% con-
fidence threshold, the system prioritizes high-accuracy
detections, reducing false positives and improving relia-
bility. Additionally, the project is scalable for mobile
integration, with future plans to convert the trained
model into lightweight formats such as TensorFlow Lite
or ONNX for deployment on smartphones or embedded
devices. This ensures accessibility for non-experts, en-
abling real-time vector surveillance in remote locations.

3. Implementation and Results

The complete implementation, including dataset pre-
processing, model training scripts, and real-time de-
tection code, is publicly available in the project’s
GitHub repository: https://github.com/aaaimx/T_
infestans_detection_YOLOv8m.

After training, the YOLOv8m model was evaluated
based on several key performance metrics to assess its
accuracy and generalization ability. The model achieved
a precision of 0.9606 and a recall of 0.9041, demonstrat-
ing a strong ability to correctly identify T. infestans
while maintaining a relatively low rate of false negatives.
Figure 2 illustrates the training performance, showing
the loss curve convergence and mAP progression over
epochs, which confirm the model’s steady improvement.

The mean average precision at an Intersection
over Union (IoU) threshold of 50% (mAP@50) reached
0.9588, meaning that the model correctly identified T.
infestans with high accuracy when the predicted bound-
ing boxes overlapped at least 50% with the ground truth
annotations, demonstrating high detection accuracy un-
der standard intersection-over-union thresholds. How-
ever, the mAP@50-95, which evaluates performance
across multiple IoU thresholds, was 0.6539, suggest-
ing that detection confidence varies depending on ob-
ject overlap. The fitness score, calculated as 0.6844,
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(a) (b)

Figure 2. Training Performance Graphs: (a) Loss curve over training epochs and (b) mAP progression
during training, illustrating performance trends.

reflects the model’s overall precision, recall, and IoU
consistency. These results indicate that the model gen-
eralizes well to the validation set, achieving high accu-
racy in controlled conditions but may require further
refinements to improve detection under more challeng-
ing real-world scenarios, such as variations in lighting,
backgrounds, and occlusions.

To visually assess the model’s performance, Figure
3 presents examples of T. infestans detections. The im-
ages illustrate successful identifications where the insect
was accurately enclosed within bounding boxes, demon-
strating the model’s ability to detect the target species
across different environments.

Additionally, to evaluate the specificity of the detec-
tion system, Figure 4 shows instances where T. infes-
tans was detected while other insects, such as spiders
and bed bugs, were not misclassified as T. infestans.
These results highlight the model’s ability to differen-
tiate T. infestans from other visually similar insects,
reducing the likelihood of false positives.

4. Discussion and Potential Impact

Vector-borne diseases pose a significant public health
challenge, requiring efficient and accurate surveillance
systems to mitigate their spread [26]. Traditional vec-
tor monitoring methods rely on manual insect identifi-
cation, which can be time-consuming, labor-intensive,
and prone to human error [27]. The integration of AI in
vector surveillance presents a transformative approach,
allowing for automated, scalable, and real-time detec-
tion of disease-carrying insects [28]. This study demon-
strates the feasibility of using deep learning-based ob-
ject detection, specifically YOLOv8m, to identify T. in-
festans with high accuracy and efficiency, ensuring that
individuals—particularly those who may have been bit-
ten—can quickly recognize the insect and take appropri-
ate action, such as capturing it for evaluation by health
professionals [29].

Beyond its role in vector control programs, au-
tomated identification of T. infestans is crucial for

individual-level decision-making [30]. When a person
is bitten by this insect, capturing it and bringing it to
a health center for examination is essential, as experts
can determine whether it carries T. cruzi, the parasite
responsible for Chagas disease [31]. Misidentification or
failure to detect T. infestans could result in missed med-
ical evaluations, potentially leaving individuals unaware
of their exposure risk [32]. Conversely, if the insect is
not T. infestans, the person should pursue a different
course of action, highlighting the importance of rapid
and accurate identification [33]. By automating insect
detection, this AI-driven system reduces dependence on
expert entomologists, accelerates response times in both
public health initiatives and personal health decisions,
and enhances disease prevention efforts [34]. The abil-
ity to deploy AI-based detection models in remote or
high-risk areas further strengthens surveillance capabil-
ities, making it easier for public health organizations
and individuals to monitor and respond effectively to
potential threats [2].

The proposed YOLOv8m-based detection system
offers a highly effective solution for vector surveillance,
disease prevention, and individual health decision-
making. With high detection accuracy, demonstrated
by strong precision, recall, and mean average precision
(mAP) scores, the model ensures reliable identification
of T. infestans [35]. Its real-time processing capabili-
ties, powered by OpenCV-based deployment, allow for
instantaneous detection using a webcam or other imag-
ing devices, making it suitable for both field applica-
tions and personal use [36]. Trained on a diverse dataset
with data augmentation techniques, the model general-
izes well across various lighting conditions, insect orien-
tations, and backgrounds, making it adaptable to dif-
ferent environments. This model has the potential to
impact individual health decisions, as it enables peo-
ple to determine whether an insect in their home is T.
infestans and requires medical attention [37]. By pro-
viding a scalable and cost-effective solution for early
detection and monitoring, this AI-powered system may
strengthen vector control efforts, empowering individu-
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Figure 3. Examples of T. infestans detected by YOLOv8m. The bounding boxes highlight successful
identifications under various lighting conditions and orientations.

als with fast, AI-assisted identification, and ultimately
aiding in the prevention of Chagas disease transmission
[38].

Despite its strong performance, the proposed detec-
tion system has certain limitations that need to be ad-
dressed for improved real-world applicability. One key
challenge is the occurrence of false positives in cluttered
backgrounds, where the model occasionally misidenti-
fies objects with similar textures or shapes as T. infes-
tans. Additionally, poor lighting conditions—such as
dim environments or strong shadows—can reduce de-
tection accuracy, leading to missed identifications (false
negatives). Another limitation stems from the dataset
constraints; since the model was trained on a small set
of 91 original images, its generalization to highly var-
ied or unseen environments may still be limited. Ex-
panding the dataset with more diverse images, includ-
ing additional field-collected samples under different en-
vironmental conditions, could help improve robustness.
Moreover, fine-tuning hyperparameters, such as confi-
dence thresholds, learning rates, and anchor sizes, may
further enhance detection performance. Finally, testing
the model in real-world settings, such as deploying it
in vector surveillance programs, would provide valuable
feedback to refine detection accuracy and adaptability
in operational scenarios. Addressing these limitations
will be crucial for optimizing the system for large-scale
deployment and real-world usability.

While this study focuses on the detection of T. in-
festans, the underlying AI-based detection framework
has the potential to be adapted for a wide range of
applications beyond Chagas disease vector surveillance.
Similar deep learning techniques could be applied to the
identification of other disease-carrying insects that are
often misidentified, such as other species of Triatoma
that also transmit Chagas disease or similar-looking in-
sects that are harmless. This could help improve public
awareness and reduce unnecessary concern, while en-
suring that true vectors are identified and handled cor-
rectly.

Additionally, this AI-driven approach could prove
valuable in agriculture, where automated detection of
crop-damaging pests (e.g., locusts, beetles, or caterpil-

lars) could help farmers implement targeted pest con-
trol strategies, reducing pesticide overuse and improv-
ing crop yields. Beyond public health and agricul-
ture, AI-powered biodiversity monitoring could benefit
from such models by enabling the automated classifi-
cation of insect species, contributing to ecological re-
search and conservation efforts. By refining and ex-
panding this detection framework, deep learning models
could support real-time monitoring systems for vector
control programs, environmental protection initiatives,
and field-based entomological studies, demonstrating
the far-reaching impact of AI in entomology, epidemiol-
ogy, and ecological science.

To maximize the real-world impact of this detection
system, several key advancements are planned for future
deployment. One major focus is adapting the model
for mobile and embedded systems, enabling lightweight
deployment on smartphones, drones, or IoT devices for
real-time vector surveillance in remote areas. Efforts are
underway to convert the trained YOLOv8m model into
optimized formats such as TensorFlow Lite or ONNX,
reducing computational requirements while maintaining
detection accuracy. Additionally, field testing in real-
world environments is crucial to validating the model’s
performance under varied lighting conditions, diverse
insect orientations, and natural backgrounds. Collabo-
ration with entomologists and public health experts will
provide critical feedback for refining the system, ensur-
ing its practical usability in vector control programs.

Beyond mobile deployment, integrating edge com-
puting and federated learning could further enhance of-
fline detection capabilities, allowing the model to func-
tion in areas with limited or no internet connectivity.
Edge AI devices could process detections locally, send-
ing only essential metadata to centralized databases for
broader epidemiological monitoring. These advance-
ments would significantly improve accessibility, scala-
bility, and efficiency in disease vector surveillance, agri-
cultural pest management, and ecological monitoring,
making AI-powered detection a viable tool for real-
world applications.
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Figure 4. Examples of T. infestans detection alongside other insects. The model correctly detects T.
infestans while avoiding false positives for other species such as spiders and bed bugs.

5. Conclusion

This study developed a YOLOv8m-based detection
model to accurately identify T. infestans, offering a scal-
able tool for vector surveillance and individual health
decision-making. The model demonstrated high de-
tection accuracy, supported by strong precision, recall,
and mean average precision (mAP) scores, ensuring re-
liable identification across diverse environments. Ad-
ditionally, its real-time processing capabilities, enabled
by OpenCV, allow for instantaneous detection, mak-
ing it practical for both field applications and personal
use. By automating the detection process, this system
not only aids public health professionals but also helps
non-experts recognize T. infestans, ensuring individuals
take appropriate actions after a bite—either capturing
the insect for examination or avoiding unnecessary con-
cern in cases of misidentification. These advancements
contribute to faster response times, improved disease
monitoring, and enhanced public health strategies, ulti-
mately reinforcing efforts to mitigate the spread of Cha-
gas disease.

The proposed AI-powered system presents a scal-
able solution with the potential for widespread use in
public health programs, particularly in resource-limited
regions where expert identification is not readily avail-
able. By reducing dependence on trained entomologists,
this model enhances accessibility, enabling quick and
accurate recognition of T. infestans in real-world con-

ditions. This capability ensures that individuals take
the correct post-bite actions, such as submitting the
insect for analysis or seeking alternative medical guid-
ance if the insect is not a vector of Chagas disease. By
minimizing misidentification and delays in medical in-
tervention, this AI-driven system could play a role in re-
ducing Chagas disease transmission risks, underscoring
the potential of AI-based solutions in improving vector
surveillance and public health outcomes.

Despite its strengths, the detection system faces
challenges that must be addressed to enhance its real-
world performance. False positives can occur in clut-
tered backgrounds, where objects with similar textures
or shapes may be misidentified as T. infestans. Ad-
ditionally, poor lighting conditions, such as dim envi-
ronments or harsh shadows, can lead to false negatives,
affecting detection accuracy. Another key limitation is
the dataset size, as training on 9,100 images (included
augmented images) may not provide sufficient diversity
for robust generalization. Expanding the dataset with
more field-collected samples and similar-looking non-
vector insects could improve model reliability. More-
over, fine-tuning hyperparameters, such as confidence
thresholds and learning rates, may further refine de-
tection performance. Future work will focus on mobile
deployment, real-world field testing, and collaborations
with public health organizations to integrate this tool
into vector control programs, ensuring practical usabil-
ity in endemic regions.
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[33] R. Gurgel-Gonçalves, F. Abad-Franch, M. R. de Almeida, M. Obara, R. D. C. M. D. Souza, J. A. de Sena Batista, and
D. Rocha, “Triatodex, an electronic identification key to the triatominae (hemiptera: Reduviidae), vectors of chagas
disease: Development, description, and performance,” PLoS ONE, vol. 16, 2021.

[34] M. E. de Carvalho, R. A. da Silva, V. L. Rodrigues, and C. D. de Oliveira, “The chagas disease control program of the
são paulo state: the contribution of serology to the epidemiological investigation of triatomine-infested domiciliary units
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surveillance of triatoma infestans and triatoma sordida with chemically-baited sticky traps,” PLoS Neglected Tropical
Diseases, vol. 6, 2012.

[38] L. Abrahan, M. Cavallo, and I. Amelotti, “Impact of involving the community in entomological surveillance of triatoma
infestans (klug, 1834) (hemiptera, triatominae) vectorial control,” Parasites Vectors, vol. 14, 2021.

38

http://maikron.org/jaica

	Introduction
	Project Description
	Implementation and Results
	Discussion and Potential Impact
	Conclusion

