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A B S T R A C T

Accurate short-term weather forecasting remains a critical yet complex task, particularly in tropical
regions where high variability and abrupt climatic shifts can have immediate impacts on agriculture, in-
frastructure, and public safety. Traditional statistical methods often struggle to capture the non-linear
and multi-scale nature of meteorological time series, limiting their effectiveness in localized forecasting
scenarios. To address this challenge, this paper presents an exploratory prototype that combines Em-
pirical Mode Decomposition with Recurrent Neural Networks, specifically Long Short-Term Memory
(LSTM) architectures. Daily data on temperature, humidity, and atmospheric pressure from Mérida,
Yucatán (2000–2018) were decomposed into Intrinsic Mode Functions, which served as input features
for training separate LSTM models. The hybrid system achieved promising results, particularly for
temperature and humidity, capturing key short-term patterns while highlighting limitations in pressure
forecasting. These findings suggest that EMD-based preprocessing can enhance neural sequence mod-
els in dynamic forecasting contexts, offering a pathway toward more adaptive, data-driven approaches
in weather-sensitive applications.

Keywords: empirical mode decomposition, recurrent neural networks, weather fore-
casting

1. Introduction

Weather forecasting remains one of the most challeng-
ing tasks in data science due to the inherently dynamic
and complex nature of atmospheric systems [1, 2]. In
regions with tropical climates, such as Mérida in south-
eastern Mexico, the difficulty is compounded by high
variability, localized phenomena, and abrupt transitions
in key meteorological variables [3, 4]. Accurately pre-
dicting conditions like temperature, humidity, and pres-
sure is crucial not only for day-to-day planning but also
for sectors such as agriculture, infrastructure manage-

ment, and public safety [5]. However, traditional fore-
casting models often struggle to cope with the non-
linear and non-stationary behavior exhibited by real-
world weather data [6, 7]. In this context, the devel-
opment of novel methods capable of identifying pat-
terns in chaotic time series has become increasingly rele-
vant, particularly in light of growing interest in localized
climate-sensitive decision-making [8].

Despite advances in statistical modeling, traditional
forecasting methods often fall short when dealing with
the intricacies of real-world meteorological data [9, 10].
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These methods typically rely on assumptions of linearity
and stationarity that rarely hold in practice [11], espe-
cially when variables exhibit abrupt shifts, irregular cy-
cles, or long-term dependencies. As a result, they tend
to oversimplify the underlying dynamics, leading to sub-
optimal predictions [12]. Furthermore, standard time
series techniques often fail to account for the hierarchi-
cal nature of temporal patterns—some of which unfold
over hours, while others emerge over weeks or months
[13]. This limitation becomes particularly evident in
tropical regions, where weather systems are influenced
by both seasonal cycles and transient atmospheric dis-
turbances [14]. Capturing such multi-scale dependen-
cies requires more flexible, adaptive approaches capable
of learning directly from the data [15].

To address these challenges, this project explores
a hybrid approach that combines Empirical Mode De-
composition (EMD) [16] with Recurrent Neural Net-
works (RNNs), specifically Long Short-Term Memory
(LSTM) architectures [17, 18]. EMD is an adaptive
signal processing technique that decomposes complex,
non-linear time series into a finite set of oscillatory
components known as Intrinsic Mode Functions (IMFs).
These IMFs capture meaningful temporal structures at
different scales, effectively isolating patterns while re-
ducing noise and irregularities present in the original
data. Once the meteorological variables are decomposed
into IMFs, they can be used as input features for train-
ing an LSTM model. This type of RNN is particularly
well-suited for sequential data, as it retains information
over long periods and is capable of modeling temporal
dependencies [19]. By combining the noise-filtering ca-
pabilities of EMD with the sequence learning strength
of LSTM networks, the proposed method aims to im-
prove short-term forecasting accuracy in a data-driven
and adaptive manner.

This work presents the design and implementa-
tion of a prototype system that integrates EMD and
RNNs for the short-term forecasting of key meteoro-
logical variables in Mérida, Yucatán. Specifically, the
project focuses on predicting daily values of tempera-
ture, humidity, and atmospheric pressure using histor-
ical data provided by the Comisión Nacional del Agua
(CONAGUA). The goal is not to develop a production-
grade forecasting tool, but rather to explore the feasibil-
ity and performance of the proposed hybrid approach in
a real-world context. As such, the system operates as
an early-stage proof of concept, emphasizing method-
ological exploration, performance evaluation, and iden-
tification of practical challenges in data preprocessing,
model training, and result interpretation.

This project represents an exploratory effort to
prototype an AI-based solution for a real-world fore-
casting challenge. Rather than offering a finalized or
production-ready system, it emphasizes the early stages
of implementation, highlighting both the potential and
limitations of applying advanced learning techniques to
meteorological data. By experimenting with the in-
tegration of EMD and recurrent neural architectures,
the work contributes practical insights into how data-

driven models can be developed and adapted for com-
plex time series tasks. Although focused on a local-
ized use case, the approach offers a foundation for fu-
ture applications in fields such as agriculture, disaster
preparedness, and environmental monitoring, where im-
proved short-term weather prediction can lead to more
informed and timely decisions.

2. Project Description

The proposed system follows a modular architecture de-
signed to process raw meteorological time series and
generate short-term forecasts through a hybrid ma-
chine learning pipeline. At its core, the system in-
tegrates EMD as a preprocessing step with a RNN
based on LSTM units for prediction. The pipeline
begins by taking daily meteorological variables as in-
put—specifically temperature, humidity, and atmo-
spheric pressure—collected over a multi-year period.
These raw time series are then subjected to EMD to
extract IMFs that isolate oscillatory patterns and re-
duce noise. The resulting IMFs serve as enhanced input
features for the LSTM model, which is trained to learn
sequential dependencies and generate forecasts for the
following day. This sequential flow—from raw data to
decomposition to sequence modeling—defines a struc-
tured yet flexible prototype aimed at improving predic-
tion accuracy in complex, real-world weather scenarios.

The dataset used in this project consists of daily
meteorological records for the city of Mérida, Yucatán,
spanning from the year 2000 to 2018. The data was
obtained from the CONAGUA, the national authority
responsible for weather monitoring in Mexico. Three
primary variables were selected for analysis: temper-
ature (in degrees Celsius), relative humidity (percent-
age), and atmospheric pressure (in hPa). Each variable
was recorded at consistent daily intervals, resulting in
a structured time series with over 6,500 data points per
variable. Prior to modeling, the raw data underwent a
preprocessing stage that included the removal of missing
or anomalous values, normalization of scales, and con-
version into CSV format for compatibility with machine
learning tools. The dataset was then divided into train-
ing and validation subsets, maintaining chronological
order to preserve the integrity of the temporal structure
essential for time series forecasting. The seasonal pat-
terns and short-term variability of the three variables
are illustrated in Figure 1.

EMD was applied individually to each meteorolog-
ical variable to extract its underlying oscillatory modes
in the form of IMFs. This adaptive, data-driven tech-
nique decomposes a non-linear and non-stationary time
series into a set of components that represent localized
fluctuations at different temporal scales. The decom-
position was performed using the PyEMD library, a
Python implementation that automates the sifting pro-
cess without requiring predefined basis functions. For
each variable, the EMD process yielded a series of IMFs
ranked from high-frequency (short-term variations) to
low-frequency (long-term trends). To balance model
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(a) Daily temperature (°C)

(b) Daily relative humidity (%)

(c) Daily atmospheric pressure (hPa)

Figure 1. Meteorological Time Series for Mérida (2000–2018). Daily values of the three meteorologi-
cal variables used in this study: (a) temperature, (b) relative humidity, and (c) atmospheric pressure, as
recorded by CONAGUA. These raw time series illustrate seasonal variability and short-term fluctuations
that make forecasting a challenging task.
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complexity and performance, the five most informative
IMFs were selected for each variable and used as input
features for the forecasting model. This step allowed
the neural network to learn from a cleaner, multi-scale
representation of the data, reducing the impact of noise
and enhancing its ability to capture relevant temporal
patterns. An example of the decomposition applied to
the temperature variable is shown in Figure 2.

The forecasting component of the prototype was
built using a RNN with LSTM units, designed to model
the temporal dynamics of the decomposed meteorologi-
cal data. Each input sequence to the LSTM consisted of
five IMFs per variable, spanning a historical window of
five consecutive days. The model was trained to predict
the value of the corresponding meteorological variable
for the next day, establishing a one-day forecasting hori-
zon. Separate LSTM models were trained for tempera-
ture, humidity, and pressure, allowing each network to
specialize in the dynamics of its respective variable. The
architecture included a single LSTM layer followed by a
dense output layer, using the Adam optimizer and mean
squared error as the loss function. The use of IMFs as
input features represents a distinctive departure from
conventional raw-sequence modeling, providing the net-
work with richer, frequency-aware representations that
enhance its ability to learn from complex time series
data.

The design of the prototype was guided by the
need to address the limitations of traditional models
in capturing the complexity of meteorological time se-
ries. EMD was selected as a preprocessing step due to
its capacity to handle non-linear, non-stationary signals
without requiring a priori assumptions about the data’s
structure. This made it particularly well-suited for trop-
ical weather patterns, which often display irregular and
multiscale behavior. LSTM networks were chosen over
other machine learning models because of their proven
effectiveness in modeling long-term dependencies in se-
quential data. One of the innovative aspects of the
prototype lies in the use of selected IMFs—especially
those representing higher-frequency components—as in-
put features, allowing the network to focus on short-
term fluctuations that are critical for daily forecasting.
Although the system remains in an exploratory stage,
the modularity of the design and the coupling of signal
decomposition with deep learning present a promising
direction for future refinement and application.

3. Implementation and Results

The implementation of the prototype was carried out
using Python as the primary development environment,
leveraging a combination of specialized libraries for sig-
nal processing and deep learning. The PyEMD li-
brary was used to perform EMD on each meteorolog-
ical variable, producing a set of IMFs that were stored
and managed using NumPy and Pandas for efficient
manipulation. For model development and training,
the Keras API within TensorFlow was employed to
build and compile the LSTM architectures. Each vari-

able—temperature, humidity, and pressure—was pro-
cessed separately through the EMD step, generating five
IMFs per variable, which were then fed into independent
LSTM models. The training pipeline included data nor-
malization, reshaping of input sequences, and batching
for efficient training. The experiments were conducted
on a standard consumer-grade laptop with 16 GB of
RAM and no dedicated GPU, with each model requir-
ing approximately 10 to 20 minutes to train, depending
on sequence length and hyperparameter settings.

Each LSTM model was trained independently for
the three target variables—temperature, humidity, and
atmospheric pressure—using a consistent training pro-
cedure tailored to the temporal structure of the data.
Input sequences were generated using a sliding window
of five previous days’ IMFs to predict the value for the
next day. The models were trained over 100 epochs with
a batch size of 32, using an 80/20 split between train-
ing and validation data. Dropout layers with a rate of
0.2 were incorporated to mitigate overfitting, and the
Adam optimizer was used with a default learning rate.
Mean squared error (MSE) served as the loss function
and primary performance metric. Training progress was
monitored via loss curves, and although no early stop-
ping mechanism was applied, performance was assessed
visually through plots of training and validation loss to
detect signs of underfitting or overfitting. This manual
tuning process provided insight into the model’s learn-
ing behavior across variables and informed minor ad-
justments in model architecture and input formatting.

The models achieved promising results in short-
term forecasting, with performance varying slightly
across the three meteorological variables. For temper-
ature prediction, the LSTM model trained on EMD-
derived IMFs yielded the best accuracy, reaching a mean
squared error (MSE) of 0.75 on the validation set. Hu-
midity forecasts followed closely with an MSE of 1.08,
while pressure predictions proved more challenging, re-
sulting in a slightly higher error of 1.32. Qualitative as-
sessments using line plots of predicted versus actual val-
ues revealed that the models were particularly effective
at capturing short-term fluctuations and general trends
in temperature and humidity. In contrast, pressure ex-
hibited more irregular patterns that the model strug-
gled to anticipate consistently, likely due to its lower
variability and subtler temporal shifts. An example of
the forecast performance for temperature is shown in
Figure 3, where the EMD-LSTM model’s predictions
closely track the actual values. Despite some limita-
tions, the results demonstrate that the hybrid approach
is capable of learning meaningful representations from
decomposed time series and producing forecasts that
align well with observed data, especially for highly dy-
namic variables.

During implementation, several practical challenges
emerged that shaped the development process and high-
lighted areas for future refinement. One of the most
notable difficulties was the occasional instability of the
EMD algorithm when applied to noisy or irregular seg-
ments of the time series, which sometimes produced
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Figure 2. Intrinsic Mode Functions (IMFs) Extracted from Temperature Time Series via EMD. De-
composition of the temperature time series into IMFs using Empirical Mode Decomposition. The IMFs
represent distinct oscillatory components at different frequency scales and serve as input features for the
LSTM model, enabling the network to learn from multi-scale temporal patterns.
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Figure 3. Forecast Results Using the EMD-LSTM Model for Temperature. Comparison between ac-
tual and predicted temperature values on the validation set using the EMD-LSTM model. The hybrid
approach effectively captures short-term trends and daily fluctuations, demonstrating the potential of
IMF-based neural forecasting for dynamic meteorological variables.

overlapping or distorted IMFs. This required manual
inspection and, in some cases, adjustments to the pre-
processing pipeline to ensure the decomposition yielded
consistent and meaningful components. On the model-
ing side, tuning LSTM networks with a relatively small
dataset proved to be delicate; minor changes in window
size, batch configuration, or dropout rate significantly
impacted validation performance. Additionally, while
temperature and humidity exhibited clear temporal de-
pendencies, pressure showed less predictable behavior,
making it harder for the model to generalize. These lim-
itations suggest the need for more robust IMF selection
criteria, possible data augmentation strategies, and ex-
ploration of ensemble or multi-variate architectures in
future iterations to enhance stability and performance
across all variables.

4. Discussion and Potential Impact

The results obtained from this prototype suggest that
the combination of EMD and LSTM networks offers a
viable strategy for short-term weather forecasting, par-
ticularly in environments characterized by high tem-
poral variability. By isolating frequency components
through EMD and feeding them into a memory-based
neural architecture, the system was able to effectively
capture and reproduce short-term fluctuations in tem-
perature and humidity. This indicates that decompos-
ing time series into simpler, interpretable components
can significantly enhance the learning capacity of se-
quence models, especially when working with relatively
small datasets. The consistency in trend alignment be-
tween predicted and actual values further supports the
notion that hybrid architectures can offer meaningful
improvements over traditional end-to-end learning on
raw sequences. These observations point toward the po-
tential of refining and scaling this approach for broader
forecasting scenarios, where data complexity and noise
often limit the effectiveness of standard methods.

By leveraging EMD to preprocess complex time se-
ries, the system reduces noise and exposes latent tem-

poral structures that are more readily learnable by re-
current networks like LSTMs. This layered approach
demonstrates that coupling domain-agnostic signal pro-
cessing methods with deep learning can improve fore-
casting outcomes without requiring specialized features
or handcrafted inputs. Moreover, the architecture’s
modularity and adaptability suggest that it could be
extended to a wide range of applications involving
time-dependent data—such as energy demand forecast-
ing, financial market analysis, or patient monitoring
in healthcare. The ability to distill relevant patterns
from noisy signals using this hybrid strategy opens up
promising avenues for AI systems designed to operate
under real-world constraints and data imperfections.

Accurate short-term weather forecasts hold sub-
stantial value across multiple sectors, particularly in re-
gions where sudden climatic variations can have imme-
diate consequences [20]. In agriculture, timely predic-
tions of temperature and humidity can inform irrigation
schedules, pest control measures, and crop protection
strategies, ultimately improving yields and resource effi-
ciency [21]. Urban planning and infrastructure manage-
ment also benefit from short-range forecasts, which can
aid in traffic regulation, drainage planning, and energy
distribution during periods of extreme weather [22]. In
the realm of public safety, early warnings based on local-
ized forecasts can enhance emergency preparedness and
response to heatwaves, storms, or unexpected weather
shifts [23]. Even at a prototype stage, the system devel-
oped in this project illustrates the feasibility of building
lightweight, adaptable tools that translate raw meteoro-
logical data into actionable insights, laying the ground-
work for more robust decision-support systems tailored
to the needs of specific communities or institutions.

While the current prototype demonstrates the po-
tential of the EMD-LSTM approach, several avenues
remain open for future improvement and exploration.
Expanding the dataset to include more recent years or
data from additional meteorological stations could en-
hance the model’s generalizability and robustness. Fur-
ther research is also needed to refine the IMF selec-
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tion process, potentially incorporating automated crite-
ria or relevance-based filtering to improve signal quality
and model input. Exploring multivariate models that
can jointly predict multiple variables, or ensemble ap-
proaches that combine different architectures, may yield
more comprehensive forecasts. Additionally, compar-
ing the LSTM performance with alternative architec-
tures such as Gated Recurrent Units (GRUs) [24] or
Transformer-based models [25] could offer insight into
trade-offs between complexity and accuracy. Finally,
integrating external data sources—such as satellite im-
agery, radar data, or environmental indices—could en-
rich the feature space and support more context-aware
predictions, bringing the system closer to real-world op-
erational deployment.

This project set out to explore the feasibility of us-
ing a hybrid approach that combines EMD with LSTM
networks for short-term weather forecasting in a trop-
ical urban setting. Motivated by the challenges posed
by non-linear and non-stationary meteorological data,
particularly in regions like Mérida, the goal was to de-
velop a prototype capable of learning meaningful tem-
poral patterns from raw climate observations. The core
methodology involved decomposing daily time series
data into IMFs to isolate key oscillatory components,
and then using these components as input features for
LSTM models trained to predict temperature, humid-
ity, and atmospheric pressure. The project remained
exploratory in nature, focusing on the practical steps
and limitations involved in building a working AI-based
forecasting system from real-world data.

The results of the prototype highlight the potential
of the EMD-LSTM combination to improve forecast-
ing accuracy, particularly for highly dynamic variables
such as temperature and humidity. The use of intrinsic
mode functions as input features allowed the models to
learn from cleaner, frequency-resolved representations
of the data, leading to lower prediction errors and better
alignment with observed short-term patterns. While the
model encountered some limitations in predicting pres-
sure, overall performance metrics demonstrated that the
hybrid approach outperformed what might be expected
from standard modeling on raw time series alone. These
findings underscore the practical value of integrating
signal processing and neural modeling in applied AI con-
texts, especially when working with complex, real-world
datasets. By addressing a concrete forecasting problem
in a localized environment, the project contributes to
the broader effort of translating AI research into func-
tional solutions with societal relevance.

As an exploratory effort, this project demonstrates

the early-stage viability of combining empirical de-
composition and deep learning for meteorological fore-
casting, while also revealing important directions for
continued development. The prototype serves as a
foundation for further experimentation with larger and
more diverse datasets, more sophisticated decomposi-
tion strategies, and expanded model architectures ca-
pable of handling multivariate interactions. Future re-
search could aim to operationalize the system as part
of decision-support platforms, particularly in climate-
sensitive sectors such as agriculture, disaster risk man-
agement, or urban planning. Additionally, integrat-
ing external data sources and comparing performance
across alternative neural models would help refine the
system’s predictive capabilities and adaptability. By
advancing from concept to implementation, this work
opens a pathway toward scalable, AI-driven forecast-
ing solutions tailored to the unique demands of specific
regions and applications.
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